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I. INTRODUCTION

It is often useful to describe weak sound waves by the theory of
geometrical acoustics. By this means, surfaces of constant phase in an
oscil latory disturbance may be traced forward in time , and amplitudes of
the disturbance , assoc iated with those surfaces , may be calculated . The
heart of the method lies in the construction of a system of rays along
which points of an initial surface are mapped parametrically by later times
onto the successive members of a family of surfaces . Once the rays have
been constructed, amplitudes are found from a transport equation, which
is an ordinary differential equation that determines the variation along a
ray . The method as described above provides an asymptotic solution in
linear acoustics for high frequencies. By var ious modif ications and
extensions the ba sic ideas may be appl ied to pulses , progress ing waves ,
and wave front expansions. All of this has been conveniently summarized by
Fr ied lander 1, who also gives several detailed examples. In nonlinear
acoustics acceleration waves or weaker discontinuities may also be treated
geometrically 2, but here the results are exact . In every case mentioned ,
the ray equations and the transport equations are only weakly coupled in
that amplitude transport depends on the rays, but the rays are independent
of ampli tude .

In this paper the intent is to obtain, insofar as possible , an intrin-
sic description of shock propagation , that is to say, a descr iption such
that the motion and the evolution of the amplitude of the shock are deter-
mined by quantities known on the shock itself. Such a description would
paral lel the results of geometr ical acoustics , but with significant differ-
ences. To begin with, a shock wave does not generally lie on a character-
istic surface of the governing equations, and so it is not possible to
define a ray as a trajectory derived from the characteristic equation.
Neither is it possible to find first the motion and then the amplitude of
the shock since the two are strongly coupled . Fina l ly , since acoustic
disturbances may overtake and modify the shock , a completely intrinsic
descr iption seems to be imposs ible. Nevertheless, it turns out that a con-
venient choice of ray arises in a natural way from the analysis , and that
an equation for the variation of amplitude along a ray can be derived .
Furthermore , the coupl ing to the flow beh ind the shock occurs only through
a single scalar term, even for the fully three-dimensional case, and the
amplitude equation may be cast into a form such that the coupling is
rela tively weak .

In a prev ious paper 3 a growth equation for the shock amplitude in an
inviscid simple elastic fluid was derived . In that paper only mechanical

1F. G. Fr iedland er, Sound Pu 1806, Cambridge University Pres s , Cambridge,
19.58.

2E Varley and E. Cumberbatoh, J. Inst. Maths. Applica. L~ 
(1965) 101.

3P. .J . Chen and T. W. Wright, Meccanica (to appear).
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effects were considered since pressure was assumed to be a function of
specif ic vol ume alone. In add ition -, -the fluid ahead of the shock was
assumed to be uniform and at rest. Finally, the analysis was based on a
fixed reference configuration, which is somewhat unnatural for problems in
fluids, al though the results are perfectly correct. This paper is an out-
growth of reference (3) and contains the results of reference (3) as a
spec ial case with some minor differences of notation, but there are signif-
icant differences in approach. The fluid is still assumed to be inviscid,
but now the pressure is taken to depend on specif ic entropy as well as
specific volume although heat conduction is ignored . Thus, the only dis-
sipation effect originates in the shock wave itself. The fluid ahead of
the shock may be in an arbitrary state with arbitrary smooth motion .
Finally, the analysis here does not rely on a fixed reference configura-
tion , but rather makes use only of the present spatial configuration at
the shock.

In the next two sections the necessary prel iminar ies are given. In
Section II, appropriate kinematics to describe the motion of a shock wave
and the evolution of shock amplitude are outlined . The approach taken is
that of the theory of singular surface s~ but the idea of the displacement
derivative is not used . Rather , variations are sought along a convenient
ray direction , chosen so as to simplify the results. In Section III the
constitut ive relation , the equations of motion , and the jump conditions
are reviewed .

In Section IV the main results are given . W ith the derivatives of
amplitude and entropy eliminated in favor of the derivative of shock speed ,
three forms of the transport equation for the variation of shock speed
along a ray are found. Each of these forms exhibits a different coupling
term with the flow behind the shock. In each case the exact value of the
coupling term depends on the past history of the shock trajectory . Thus
the equations are really functional-differential equations in disguise,
but the explicit nature of the functionals is not given. If it is then
assumed that the values of one coupling term are known exactly, then it is
found that the transport equation and a kinematical relation between shock
speed and shock normal form a hyperbolic system of equations. This implies
that disturbances to the shock surface will propagate laterally within the
shock surface itsel f .  Finally, these results are compared with Whitham ’s
theory of shock dynamics , which was derived for poly tropic gases by approx-
imate means5’6’7’8. One form of the equations given here, considered as a

~C. A. Truesdell and R. A. Toupin, “The Classical Field Theories,” Fli~igge ’s
Handbuch der Physik, 111/1, Springer, Berlin-G~i3ttingen-HeideZberg, 1960.
5~ • B. Whitham, J. Fluid Mech. ~~ , (1957) , 145.

6Q. B. Whi tha~’n , J . Fluid Mech. ~~, (1959) , 369.

7G. B. Whithain, J. P uid !vfech. ~j , (1968), 449.
8G. B. Whitham, “Linear and Nonlinear Waves,” John Wiley and Sons ( Wile ~-
I nter 8c ief lc ’) , New York - London - Sy dn1~i - Toronto , 1974.
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hyperbolic system and specialized to polytropic gases , gives the same
—s-peed--of propagation within ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ all- Mach - - -- -

numbers.

II. KINEMATICS

A shock wave may be descr ibed as a propagating singular surface across
which the pressure , density, entropy, and particle velocity are all dis-
continuous. There are several convenient mathematical representations of
the surface. For example ,

~ (x , t) = o

t - T ( X )  = o (2.1)

1 2
= x(u , u , t)

In these equations ~ is the ordinary Euclidean position vector in a fixed

Cartesian coordinate system, t is time and u’, u
2 are Gaussian surface

coordinates. The normal in the direction of propagation, ii , and the
normal velocity, v, may be computed from any of the three representations.
The first two give

= -1 = r~ : -v (2 .2)
,~~ ,

where the comma denotes partial differentiation . With the surface coordi-
nates orientated correctly for sign , the third representation gives

= 

~,l 
X 

~~~~~~ / I~~~~, l 
~~ 

~~~~ 2 I

(2.3)
V = 

~~~~~ 
. 13

Equation (2.3)2 may be derived by inserting (2.1)3 
into (2.1)2, differ-

entiating with respect to t holding u1 , u
2 fixed , and applying (2.2).

The function j may be regarded as a coordinate transformation from
u~ , u

2
, t to x

1
, x

2
, x

3. Its partial derivatives have special signif icance.
Basis vectors on the surface are given by

r = 1, 2 (2.4)

Greek capital letters will always be used for components of surf ace vectors
and tensors , and therefore will always have the range 1, 2 unless it is
stated otherwise. The derivative with respect to time will be called the
propagation vec tor.

= 
~~, t 

(2.5)

9 
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Clear ly ,  b need not be normal to A 1 and 
~2 since infinitely many representa-

tions of -the form (~2:1) conid be made~~ fact oireo f  the principal tasks -— - -

of this paper is to choose ~ in a conven ient and simpl ifying manner.

The surface metric tensor and reciprocal basis fol low in the usual
way from (2.4)

Ar~ = 

~r .

A = det (Ar~
) (2.6)

Ar.5 
= (A

r.5)~
1

Ar 
= A r~

The coordinate transformation will be invertible if its Jacobian determi-
nant , J, does not vanish.

= (A~ X 
~~ 

b = {det Ar~}½ fl . b
(2 7)

= A1 ~ ~

It is now easily checked that the inverse of the Jacobian matrix is the
following

= (1 - n a b
’
~ A

r
- V / - (2.8)

33u 
-- 

V

In (2.8)2 the substitution u
3 

= t has been made to indicate that time is

to be paired with the surface variables u1, u
2 and not with the spatial

var iables x 1, x2, x3. For clarity this practice will be followed in the
sequel , and the symbol t will only stand for time in conjunction with
1 2 3x , x , x .

If a function is defined only on the shock surface, it is most natur-

al ly  regarded as a function of u~ , u
2, u3. Yet with the aid of (2.8) it

still makes sense to compute the spatial gradient of such a function .

Thus, if the amplitude of the shock wave is a = a(u~ , u
2
, u

3
), its gradient

is given by

= a (i - n a b~A
r + a (2.9)

~ Ir \ v -  - / -  ,3 v

10 
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and the directional derivative along ~ is given by
— 

(2.10) 
—

The notation a 11. indicates covarient surface differentiation . Other

functions , such as the pressure, are defined for all ~~~, t , but the limit-
ing values on the shock ~urface are of particular interest . For such a
function , f(x , t), let f and f indicate the limits taken from the region
ahead of or behind the shock respec tively. Thus , we have

f
t 

= lim f(~ , T (X) ~ c) (2.11)

The di f fe rence  or j ump between the two sides is indicated as fol lows.

[~~~~] = f~ f + ( 2 .12 )

In taking the gradient of such a function ; one must be clear as to the
order of the differentiation and the limit on the surface. From (2.11)
and (2.2), it follows that

( f )~ . = (f~)t + ~~ (f )~,1 1 V

n. (2.13)
[f] 1 

= [f
1] 

+

Formulas ( 2 . 9 )  and (2 .10)  apply to the functions f~ and f as well.

I I I .  DYNAMICS

In t h i s  section one version of the standard equations of inviscid
f l uid mechanics is reviewed . Let e , the specif ic  in ternal  energy of the
f lu id , be regarded as a function of specific volume , u , and specific
entropy , ~~. We hav e

e = e(u , n) (3.1 )
In terms of this  thermodyn amic potent ial  the pressure , p, and temperature ,
e , are given as follows.

p = -e
Ii (3. 2)

O = e
The subscript s denote par t ia l  d i f f e r e n t i a t i o n .

In reg ions adjacent  to a shock wave , the  conservation laws for mass ,
l inear  momentum , and energy may be expressed by par t i a l  d i f f e r e n t i a l
equat ions ,

11
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~~= u u .
1, 1.

= c f~ 
+ 

(3.3)

= 0

The third equation is a reduced form for the conserv ation of energy in
the absence of heat conduction and supply and makes unnecessary a separate
inequal ity for entropy. The particle veloc ity is ~~, the density is p . and
the body force is f. Latin indices are associated with Cartesian vectors
and tensors. The dot denotes the material time derivative, e. g .
U = ~~ .) + l J .~~~~~~~,t ,1 1

Across a shock wave , the conservation laws must be expressed by jump
conditions. It is useful first to define U , the normal shock speed
relative to the fluid on either side of the shock .

+ +
= v - u .~~n.  (3.4)

1 1

The conservation laws for mass, linear momentum , energy in a reduced form
and entropy may now be stated as follows.

[pU] = o

+ +[p}n 1 = p U [u 1]
(3. 5)

U~ [e] = + p )  E u . ]  n.

[n] � o

It is assumed that p is always negative, but p need not be positive for

the development of the theory . It is assumed that all shock waves to be
examined not only obey equations (3.5), but are stable as well. The
questions of necessary or sufficient condition s for stability will not be
considered .

In a shock wave U~ ~ o. Thus equation (3.5) shows that the jump in
particle velocity must be normal to the wave , and therefore, it may be
expressed as follows .

Eu.] = a U~ n.1 

- + 

1 
+ 

(3.ô)
or u. = u .  + a U  n .

1 1 1

tJ~ has been introduced as a convenient normalizing factor, and a is cal led
the amplitude of the wave. It now fol lows d i rect ly  from ( 3 . 4 ) ,  and
(3.6) that

= 
+ 

(1-a) 
(3. 7)

U = U~ (1-a)

12 
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and from (
~~~~~~ ) 2  and (3.6) that

p
~ 

(U~ ) 2 
= .1P~J.. (3.8)

From it is clear that  the ampli tude , a , is a measure of the
compression (or d i l a t ion)  produced by the shock .

The entropy behind the shock can be wri t ten in terms of b , defined as
fol lows

ii = n~~( l+b) (3.9)
Of course it is required that b � o. Since e and p were ori ginal ly  taken
to be functions of u and Ti ,  it is clear that immediately behind the shock
they may now be regarded as function of a and b with u~ and n~ as (known)
parametric functions. Equation (3.8) is one relation among the variables
(a , b , U~ ) and (

~~~•~~~
) 2 with (3.6) provides another.

+ + -p [e] = ½(p + p )a (3.10)

In some cases it may be convenient to use (3.8) and (3.10) so as to elimi-
nate two of the variables (a, b , 1J~) in terms of the third . For example ,

+ -

<ap - 2 p  e
d a = ~~—~~ 

Ti Ti 
- U~~ dU~— + + 2e + p ( I J )

(3 11)
2 +

d b = a
~
U dU~

ii e
Ti

The solution to these differential equations wil l  depend parametr ica l ly  on
u~~, n~~, and leads to th e well  known results that for small amplitudes
b = 0(a 3) .

IV . TRA NSPORT EQUATIONS

If equations (3.8)  and (3.10) could be supplemented by a third
independent relation among the three variables a, b , U+ with time as a
parameter , then the evolution of these quantities during shock propagation
could be completely determined , at least in princip le. If such a re la t ion
is available , it must exhibit dynamical coupling with the flow behind the
shock since none exists in either (3.8) or (3.10), and yet such coupling
must be present .

A shock wave connects two adjacent regions of smooth flow where
equations (3.3) hold. An attempt to obtain the desired third relation can
be made by man ipulating the jump in (

~~~~~)2

13 
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P~ 
(u

~~Y -~: ~~~~~ ~~~~~~ 

+ +

(4 .1 )
+(p~ ~

) f = p
_ 

Ci1 
- p

~ i
•
i
~~~

The procedure now followed is to express as many quantities in (4.1) in

terms of a, b , U~ and u’
~, ~~~~~~ u~~ as possible. The terms Pu ’ p~ and

p
~ 

already have the required dependence through 
~~~~~~~~~~~~~ 

and (3.9). The

process of converting (u
1Y and (n~~Y into the required form is lengthy

but straightforward , and requires little more than repeated application
of (2.13), and (3.3)3 to (3.7) and (3 .9 ) .  Begin wi th  (2 .13)
applied to specific volume .

± ± n i ±
= 

~,i 
— 

~ ~~~~~~~ (4.2)

Either the top sign or the bottom sign is to be chosen consistently. From
the definition of material derivative we also have

± . _t ± ±(u t ) = (u)  - (u
1

) u~ ( 4 . 3 )

Equations (4.2) and (4.3) combine to give

1 + + + . 4

{~ij 
- 

~~~ 
u~~} 

(o~~Y (u)~~ - 
~~

— (uT ( 4 . 4 )

The matrix on the left hand side is easi ly  inverted .

= ~
t5k i  + 

~~~~~ 
u
j l  ~( ±) — 

~~~~
_ ( T:T)~~~~ (4.5)

For the minus signs in (4.5) and with the use of 
~~~~~~~~ 

(3. 6) , ,  
~~~~~~~~~~~~~~~and 

~~~~~ 
this becomes -

I n
- k + +

~- ° k~ 
= 

~6ki  + 
+ 

(u.  + a U n )
‘ U (1—a)  (4 .6)

(u ~~)~~~ ( 1-a)- u~ a 1 - 
~~~~~ u~ ( l - a )

The last term in (4 .6)  may be expanded with the aid of (2.13)
i and (3.6),to g ive (4 .7 )

n.
= (~; + a U~ n~ )~~ - 

~~~~~~ 
(u

3~~
Y ~ (4.~~)

and the last term in ( 4 . 7 )  may be expanded to give ( 4 . 8 ) .

(u .  )~ 
U (1-a) 

= (~~
)
~ - ( u  + a U~n 1

) .
V J ( 4 . 8 )

+ (a U~ n.) ,~~ }

1-1 
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To arrive at (4.8), the definition of material tine derivative as well as
(2.13)i, (3.4), and (3.6) 2 have been used . Inspection of (4.6) - (4.8)

shows that spatial derivatives must be taken on two types of quantities :
those defined only on the surface, and those defined in the region ahead
of the shock but restricted to the shock as in (2.11). Accordingly, the
derivatives must be interpreted by (2.9) or (2.13).

The term (o
~)~~ 

may be found from (4.4) with substituted .

= 
~~ij 

‘
v 

~ 
~ (u~~Y

’ + ~~ U (u
3 3
)~ (4.9)

Similarly, for (u1~) ~ 
we have 

+
n. u n.

(ut) . = - ~ 
k (u. )~ + ~~~~ (4. 10)1 ,3 j k v i ,k v i

Fi n a l l y ,  wi t h (4 .7) - (4.10) equation (4 .6) reduces to the fol lowing
ii n.n.

- + 1 3(u . )  = ~(l-a)ó . + a n .  n .  ~ (u • )  + 2 [u . ]
,1 13 ~ ~ ‘~~ (U ’

~) (1—a)

+ l+ a fl~~~ U~
-U 6 . . + — n . n . + 2  a .

13 1—a 1 U
4 ( l — a )  ‘~~

+ + + .. (4.11)a u  n .  ‘I i  fl +~~~i J  k k~ + +
- j (U ) _ n . U a n . .

U + 
~ U~ ( 1— a) , ,k 1

+
~J a +- n . n .n  (u .

U~~( l - a )  1 3 k j , k

The term _n~ . in (4 .11 )  is equa l to B~ , whi ch is twice the mean surface

curvature . That this is true may be seen from (2.9) applied to p an d the

formulas ji = _ B
r and ~ r = .. = o. The fact that ~ = o,r r ,

simplifies the reduction of (n . )  , hut the process is exactly the same .
The result is

(
~,1Y = (l+h) {ójj + ~~

_ n . n . }  (n~~ )~
I n .  u .  (4. 12 )

+~~~ a i 1
~ Tl ~~~~~

. + — u.n. + h
ij 1-a 1 ~ If(l-a)ç ‘3

The body force and acceleration terms may be rewritten as

- E~~~~ 1 f .  -i-- [a .] + 
~~~~

_- ( •
~~~ 

- fj
1 i I — a  i 1—a i I

+ (4 13)
‘
i:~ 1’•’~

l — 

1~a 
.{1~ 

(u~~)~ 
+ i~ 

(n 1)4} 

--5- - - -  -------- - - - - -5-- _ _ _



Equat ion s (4.11) - (4 .13) should be inserted in (4.1)  to complete the
desired reduction .

Rather than wri t ing  out the whole equation , it is more convenient to
examine the normal and surface component s separately. But even before
doing that , note that a certain combination of derivatives of the amplitude
arises when taking the norma l component of (4 .11 ) .  That is

(U~ n. + u .
k ) a

1 1 ,1

The same combination occurs for U~ and b. No choice has yet been made for
the propagation vector in ( 2 . 5 ) ,  so we now set

(4 . 14)

where the last equali ty follows from (3.6) 2 and From (3.4) it is

clea r that th i s  choice sat isf ies  (2 .3) 2 . In effect , this  one feature of the
surface parametrization (2 .1 ) 3 has been chosen s t r i c t ly  for convenience.
Any other choice that sa t i s f ies  (2.3) 2 could also be made to serve. Equa-

t ion  (4.14)  defines a fami ly  of rays along which the surface may be thought
to propagate. Now wi th  the aid of (2 .10) and (4 .14 ) ,  the norma l component
of (4.1) may be set down . The plus si gn is always understood to apply to
a l l  terms unless the minus sign is e x p l i c i t l y  indicated . This convention
will be adopted in the sequel.

a up 
~ 
-

2UP
J 

a 3 
- nP~ b 3 + U U 3

/u P
= - a ( 1-a )u p Un.  + ( 1L + —I n.  [u . J

U 1 ,1 \ t J  uI 1 1

(4. 15)

(1-a) P U} 
(Ti n) + U 

~~~~~~~ 
(1+b)_P T1}(rl ,n)

-aup (n.u. )
U 3 J , fl

The subscript n denotes the norma l derivative , e.g., (u s
) = n

1(u 1
) .

Two other equations for the 3-derivatives of a , b , U may be found by
differentiating (3.8) and (3.10) and appl ying the following two simple
identities.

(u) 
~ 

= U(u ) + u (u. .)
(4.16)

(ri ) 3 = U(ri~~)

The first of these is derived from (2.10) , (4.14) and (4.9), and t he  secon d
is derived similarly. The two new equations may now he written down .

1 (

- --- --5-- - - -- - . - - - . ---- - - -  - - - - - -~~~~~~~~~~~~~~~~~~~~~~ - - - .
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-(up0 
+ ptJ 2 )a 

~ 
+ TiP~~ b~~ 

- 2apUU
3

= - 

~
(l_ a)p

~ 
- + a(PIJ)2} {Uu + uu

3~~}

a j  

{(l+b)p~ ~~~~~~ 
- -

- 
~~

- ~{ui~ + ~u 
} 

a 3 
+{_ .anp - ~rie~ 

} 

b 3 (4. 17)

= - 

~ 
+ 1~ 

(1_a)] * a(l-~-) (PU)2}{Uo~~ ~uu~ 
~~}

- 

{~~~~ 
[r~ + r~~ (l+b)] + ~[e~ 

- e~ (l+b)]} un~

Rather than solving directly for a 3, b,3 
and U

,3 
from (4.15) and

(4.17), it is convenient to regard a and b as functions of I), as in (3.11)..
Then (4.17) may be solved for a,3 and b 3 in terms of U 3.

2 ( ap~~~
a - ~~~ ~2 - ~~~~~ tj l tj
,3 2 ’

~ - l  3
1-1.1 ! ~~~

+ ~~~~ 
_ j \ _ p Il— - 2 ~~ 1 2) — 2e Pu (l-i~ ~ ~1-~ ~ (4.18)

2
b _ a U  ,

~ + u ~a 1
,3 

— 
- ‘•‘,3 - )2 ‘1 ~2~e ne~

In (4.18), 1
~ 

and 1
2 are the right hand sides of (4.17)i and (4. 17) 2

respectively. Since I~ and 12 vanish for homogeneous cond itions ahead of
the shock , they will be called the inhomogeneous terms . In addition , ~~,

the Mach number behind the shock , has been introduced . We have

2 
= (tJ~

\
~
2 

= - 
(p U) 2

and (4.19)

m2 
(U~’

)

2 
= - 

(pU) 2

PU

for the Mach number ahead of the shock. Here c~ and c are the acoustic
speeds relative to the flow ahead of and behind the shock , respectively.

+ + 2  +
We have (p c )  = -p

_ _ _  ________ — -- - —~-~-•- -- ~~~~~~~~~ - —- - - -—-- - -~~~~~~~~~~ -5
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With the aid of (4.18), (4.15) becomes

&‘ 2 2 pp l+3~i l+~.I r~ 2
‘
~ 2 2 a 2 - 

a U 3
~j 1  (l-i~i ) l-~j pe

11
2 2 (4. 2

= -a(l-a) —
~~

- ~ + _ f l~ [~ j ]  + I
, 

1.1

I is the net inhomogeneous term from (4.15) and (4.18) and is given in
full in the Appendix. Equation (4.20) together with (4.14), repeated here,

(4.14)

describe the instantaneous motion of the surface. At a given instant of
t ime , if the location of the surface is known , then the normal rj and mean

curvature B~ are known . Furthermore, if the distribution of U over the

surface is known, then the distributions of a and b are known . Finally,
since u, ~~, and t~ are known ahead of the shock , the only remaining term in
(4.14) and (4.20) that is not known is the single scalar quantity n [

~
].

This final quantity provides the only coupling of the shock with the flow
behind the shock in spite of the fully three-dimensiona l nature of that flow .

Equation (4.20) shows that , aside from inhoinogeneities , it is the
competition between the mean curvature and the coupling to the rearward flow
that determines whether Ii is increasing or decreasing with time , and hence,
through (4.18) whether the amplitude is increasing or decreasing.

in a similar way, with (4.11) - (4.13) inserted in (4.1), equations
connecting the transverse derivatives of a, b, and U may be found by
resolving (4.1) along the base vectors in the shock surface.

Up
~ 

a
1 r - riP b~ r = T~ ~r R

’

~ i

+ .~( l — a )  
~ 

— .~-!_ 
~~~~~

) 

(u
1 ~

) (4. 2 1)

+ {(l+b)p11~ 
- .j

~j ~11} ~~~
With a and b determined over the whole surface from the solution of (4.14)
and (4.20), this equation determines the transverse components of acceler-
ation behind the shock. It may be thought of as a compatibility condition
for it indicates that acceleration may not he arbitrarily prescribed behind
a shock wave.
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Other Forms of the Transport Equation

Although (4.20) is exact as it stands, it may be cast into other forms
by choosing other terms to provide coupling with the rearward flow. A
discussion of the growth and decay of plane shocks in an elastic solid9
used the strain gradient as the coupling parameter; and a similar discussion
concerning curved shocks in an elastic fluid (see reference 3) used the
totally normal component of the second gradient of deformation, i.e., the
term cn niNa

N
~

(xj~~~Y where the deformation is given as a function of
material coordinates and t ime, x~ = xl(X C

~,t), and the spatial and material
normals are n and N respectively. In the present context, the quantity
most closely related to these two is the normal density gradient behind
the shock or alternatively the normal derivative of specific volume behind
the shock. The following derivation uses only kinematic identities and
jump conditions to show the relationship between the normal component of
acceleration and the normal derivative of specific volume behind the shock.

Begin wi th the fol low ing identity, which uses (3.6)2 and (4. 14).

n. (U 
~k 

+ uk ) (u .) k (4 .22)
= 

~~~
j  

~~~~ 
~k 

+ Uk ) (u~~ .
~
. a U~

With the aid of (2.13)i and (2.10), the terms of (4.22) may be expanded and
regrouped .

n1[~i.] + fl k~”’~
’ k1

+ 

j, 

+ + 
(4.23)

= a U n4n~,(u. i, ) + (a U )
J 3 , ,

Next , note that

n.n.(u . .)  = (u. .) - (s . . - n . n . )  (u. .) ( 4 . 2 4 )
1 3 1 ,3 1,1 13 1 3 1 ,3

The last term in (4.24) involves only surface derivatives. Since the
transverse component of velocity is continuous across a shock , we have

IA~~ u. 1 = o = A~ Eu.] + A~ A. [u. • ]
1 ~. ‘j ,r 1,~~ 

i 1 ~r 1 ,3

which may be rewr itten as

-a U~ n. . + (o . . - n.n.) [u. .1 = o (4.25)
1 ,1 13 1 3 1 ,)

From conservation of mass and a rearrangement of terms we have

(u
~~~
) = ~ 

(
~)~ ~~ {(u) 3 

- U n
~~

(u
~~ Y}

9P . J .  Chen and M .  E. Gur tin , m t .  ~~~ So 1 i i~ ~; t ru ~’. ~~, (1971) , b.

1 ~)
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which may be rewritten as

(u~~~Y = + (u~~~)~ - (~ U)~ Eu~~I (4. 2~ )

where 
~~~~~ 

and (4.16)~ have been used. Equations (4.23) - (4.2b)

may be combined to give

2n~ [u~J = (l—a)p U > ,n’ 
+ 2 U  a 3

+ a U
3 

+ a(1-a) U~ ~~~ 
(4.27)

+ a n.n U u.j  k j , k
where all terms on the right hand side carry the plus sign . With the
substitution of (4.27) and use of (4.18)1, equation (4.20) becomes

1 2 2 pyl+ 3ii 
+ 

l-3ii 11 -
‘1 2 a 2 T a ,3

1— ~ ’ pe (4  ‘8)

= -a(1-a)u2 
~~~~~~ 

+ J_L~.._ ( 1_ a ) P U 2 E U
, n l + I

where I stands for a l l  le f t  over inhomogeneous terms and is g iven in f u l l
in the Appendix.

Another possible coupling term , suggested by Whitham ’s papers on shock 
-dynamics (see References 5, 6, and 7), is the combination +

The derivative with respect to t’ si gnifies the time variation as seen by an
observer who is instantaneously at rest with respect to the flow ahead of

the shock. That is to say, 
~~~~~~ ~~ 

+ u1~ 
.
~~~~

— . The following identities

will prove useful. 1

= (f~~ - [u~ J 
~~~~

( f )  = (U~ n~ + u )  ( f )  
~ 

(4. 29 )

= t ’Y + U~ n . ( f . )

It is possible to work out a relationshi p between n~~(~i 1) and

+ pcn 1u~ ~
,Y for substitution in (4.20), but it is simpler to

proceed directly as follows. With the aid of 
~
4
~
29
~ i we have

+ Pcn~u~~~ ~
) = P

~~
(U u~~~) -  1u~1(P~~

) 
(4.30)

+ (p cY ~ (- ~~ P, 
+ f~ ) - (~~c )  n

~ fu . I (u1~~)

L --~~~~~-~~~~~~~~~~~~~~~~~~~ -- ---
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where (3.3) has been used to eliminate p and u. . The acoustic speed

behind the shock is given by (p c ) 2 
= -p so that  rearrangement of terms

in (4 . 30) g ives

(p r, + Pcn
~
u
~~~
)

= - (c n1 + fu~J)(p~~) + (pc) n.f.

(4.31)
- (pc) n

~
(cn

~ 
+ [u

i
]) (u

~~~
)

2 —  -— ( p c  ) (5~~ — n~
n
~

) (u~~~ )

~ince [vi = aU~o, the first and third terms involve only normal derivatives ,
which may be reexpressed by (4.29)2, and the last term may be rewritten

with (4.25). With rearrangement of terms and use of (3.7), equation (4.31)
becomes

U - c  -

u+ ~~~~~~~ 
+ 

~
cn 1u~~~ ,)

= - c~~~ aU~ {(p
-) 3 + (pcY n. (ui )3} (4.32)

+(pc) n.f. - (pc 2) {6 1~ -n1n~ (u~~~)~ + aU~ n~~~ }

When this equation is multiplied through by (l-a)U~/c , and (~)3 and

(u1 )3 are expanded with the use of (3.6)2, ~~~~~~ 
and (3.9), we have

[l-a (1-pfl ~
(
~
up
~ 

+ 
~~~~

—) a~~ + TiP11 
b
,3 

+ ~~~~~~~~ U 4

= -a (l-a) ~~~ n1 1  + ( i - a )  ( i -p )  (p ~ + p cn
~ u 1~~~,)  ( 4 .33)

- [l-a(1-p)] (1-a)p u 3 
+ ( l +b )p  11,3 

+ 
~~~~~ 

n
~~

(u
~

) 3
( i - a )  U

+pUfl.f. - (5.. - n . n . ) u .
1 1  p 13 1 3  1,3

When combined with (4.18), equation (4.33) may be reduced to

[ 1 - a ( l - p ) ]  ~~~
-

~~
-
~~

- 
~
_ - ~~-~ _~_ PL1 a

2
~ U ,3 -

2 pC 11 (4..~4)
Li (1—a) ( i — U ) —

= — a ( 1 — a )  n~ 
~ 

+ — 

~~ 
+ ~~~~~~ ,~~~‘ 

+ I

where , as before , I s t ands  for the  inhomogeneous terms and is given in
full in the Appendix. 

--- 5------- -------------- - - - .  _
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Equations (4.20), (4.28), and (4.34) all have the form

2 r
A U

3 
+ B U A~ fl 1 , ç = C + I (4.35)

where A and B are nondimensional coefficients , C is a term that couples
the shock to the rearward flow , and I represents the remaining inhomogeneous
terms . The term s A , B, C , ~v1d I have different forms in each version of
(4.3 5 ) ,  of course. In evc ’r ~ c i s e  A , B , and I are known functions of U, n ,
x, and t. The coupling t e rm  C may be further decomposed into a product of
which the f i rs t  term is a lso  a known function , but the second term contains
derivatives of flow quantities p .  0 , or u .  These derivatives are not
known in terms of quantities intrinsic to the shock wave , but , rather ,
depend on the history of the flow . In particular , they depend on initial
and boundary data where the shock wave itself is one boundary , although
there may be others. Thus, (4.20), (4.28) or (4.34) should more properly
be regarded as func t iona l -d i f f e r en t i a l  equations rather than d i f fe ren t ia l
equations.

Nevertheless , let us assume for the moment that  one of the coupling
terms is known exactly. Then (-1.35) and the  equation

n . + A~ U -n.(u. )~ A. (4.36)
i ,. ~. , r 

~ 3 , r 1

form a hyperbolic system in the unknowns U, n. Equation (4.36) is a purely
kinematic relation . It has been obtained by noting that since n Ar =

we have 9 3 
-i.li . 

~~~~~~~~~~~ 
But 

~r , 3 ~, r3 = 

~, 3r = 

~, r and i
~ 9 3 =

so (4.36) follows immediately with the use of (4.14).

The function 4(u ’, u~~, u 3) = o for the cha rac te r i s t i c  surfaces of
(4.35) and (4.36) must satisfy the equation

(~~3)~ {A( ~~~~
3

) 2  - BA
IA 

= o (4 .37 )

where A~~ represents  the cont r a v a r i e n t  components of the metric tensor for
the  shock surface.  The case 4 o is spurious , for it corresponds to the

requirement  tha t  surface de r i va t i ve s  of U and n are continuous on the shock
surface. Hence , the remaining term in brackets in (4.37) must vanish ,
which corresponds to wave propagation within the shock surface itself.
That i s  to say , disturbances to the shock surface will spread as a wave
w i t h i n  the  surface i t s e l f .  Equation ( 1.37) ind ica tes  that  the speed of
propagation is independent of direction . I f  s is  the speed and ~ is any
unit vector that is tangent to the shock surface , we have

— A 1’ 
~ r = s I .

‘~~ ‘ (4.38)

S = ..P± ~ 
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Strictly speaking, equations (4.35) and (4.36) should be supplemented by

other equations since the functions ~(u
1
, U

2
, u~ ) and ~ 1’ (u ’ , u 2 , u 3) are

not known before hand, yet they are present in the coefficients and the
right hand sides of (4 .35) and (4 .36) .  Appropriate supplementary equations
are b and A = b . Now the list of unknown functions to be deter-

mined is ii , n , ~ , and 
~~~~~~~~ 

If C is aga in regarded as known , the full set

of equations is hyperbolic as before, and the only nonvacuous characteristic
condition is s t i l l  that the bracketed terms in (4 .37) must vanish . Of
course , it should be shown that a solution to the fu l l  set of equations is
self-consistent  since U , n and must all  be derivable from ~~, but that
proof wi l l  not be attempted here .

For arbitrary levels of shock amplitude the speeds calculated from
(4.20), (4.28), or (4 .~ 4) will not be the same since the functions A and B
are not the same in the three cases. However, for weak shocks the three
calculated speeds are nearly the same and all vanish for infinitesimal
shock amplitudes . Since P~ l and a-~o for weak shocks , the speed tends to

~ ~!.~j !Lu (4.39)

Entropy changes may be ignored for weak shocks so (4.39), expressed as a
function of amplitude becomes

+ +  ½

= !~ {u
Puu } c~ a½ 

(4 .40)

If p~~<o , then a<o and (4.40) must be modified accordingly.

For shocks of stronger amplitude it is not easy in general to compare
the wave speeds s for the three cases since the internal energy function
and its derivatives have not been specified . The polytropic gas is an
important special case for which an explicit comparison is easily made ,
however . The specific internal energy in this case is given as follows ,

11-Ti0e = eo~~.J—? exp (4.41)
V

where e0, 00, and Tio are reference quantities , Cv 
15 the specific heat at

constant volume , and y is the ratio of speci fic heats (c
e
. the specific heat

at constant pressure , divided by cv)~ 
Formulas for pressure , temperature ,

or other derivat ives of e are eas i ly  found .

p = ~e = 
~~~

-
~
-
~
- e

o = e = — e
Ti ~

23
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p = 1L4_ 8 = ~~
— (4.42)

p0 = - p = - (pc)2

By man ipu la t ing  the j ump condit ions (3.8) and (3.10) in conj unction wi th
and (4 .42) 4 . one may eas i ly  f ind  formulas  for p~ and a in terms of

the Mach number rn.

2 r ia = y~ l [ m 2

(4.43)

- 
- 

+ [2ym 2 
i-ip - p

Similarly the Mach number behind the shock and the ratio p~~ /Pe
11 

are
easily calculated .

2 (y—l)m 2 
+ 2

= 22ym - (i-i)
(4.44)

.7

= 
y-l (y - l ) (y+ l )m”

- i-a 2p e (y - 1)m + 2

The relations among m , p ,  and a are shown in Figure 1 for ‘y = 1.4. With
these formulas the speed of disturbances on the shock surface always has
the form

2 2
i s \  _ m - l  445

~~
+) X (m)

where the wave factor X(m) in the three different cases is given by

(4.20): A
1
(rn) = 2 ~~~ ~ 

+~~~ - 

-l 1- 2)(4..S): A 2 (m) = —i- ~l + + 2 (1-3p ) 
~
—j- __

~~

__
~~ 

(4.46)
p ~ U

(4.34); ~3(m) = 
(l~u) ~l-2 ~~

4- (l~~~)] [I 

- _ _ _ _ _ _

p 2 ÷ p ( y — 1 )

These func t ions  are plot ted in Fi gur e 2 for y = 1.4. Although \(1) = 4
in each case , the functions diverge from each other for other values of

m , p a r t i c u l a r l y  for large m , and the de t a i l ed  shapes of the func t ions  are
rather sensitive to ‘~~. As m tends to i n f i n i t y ,  the three func t ions  t ake
on l i m i t i n g  v a l u e s
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(4.20): A
1(~) = _ _ _ _ _ _ _ _

(4 .28): A 2 (~) = 3 (4.47)

(4. 34) : X
3

(oo ) = 1 + ~~-

Clearly,  the three l imi t ing  values depend strongly on y.  This is shown
graphica l ly  in Figure 3. Cer ta inly ,  the behavior of s in the general case
in (4.38) must also depend strongly on the detai ls  of the energy function
e(u,~ ).

1/Mach NumbJ or Amp~tude

:
Figure 1: Square of rec ip~ocal Mach number and shock

ampl i tude  vs. p for ~y = 1.4 .
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Fi gure 2: Wave factor X vs.  p
2 

for y = 1.4. Curves
corresponding to the three coupling
func t ions  are shown .
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Figure 3: Asymptotic values of A (for m = ‘=) vs. y for the
range 1 � y < ~~~. Curves corresponding to the
three coup l ing  func t ions  arc shown .
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Approximations

The preceding discussion has been based on the asumption that one of
the coupling functions is known exactly, and , if that is the case , then the
development of the equations as a hyperbolic system is entirely correct. In
an actual case , the coupling functions cannot be known exactly in advance
since the domain of dependence for the full equations (3.3) includes a
segment of the shock wav e itself. This occurs because the backward wav e
cone , with apex on the rear of the shock, intersects the past trajectory of
the shock. Thus, the hyperbolic description can only be approximate at
best. It is natural to ask, therefore, which of (4.20), (4.28), or (4.34)
wil l  provide the best basis for an approximate treatment . The three coup-
ling terms are written again here for easy comparison .

(4 .20) : C1 = . [~ }

(4.28): C2 = ~~—~~—- (l~ a)m 2
~ (pc 2 ) + [u 1 (4.48)

p

(l-a) (l-p) 1 -

(4.34): C3 = ‘
~ m + ~~~~ 

+ PCfl 1u
~~~ ,)

(p c)

in each ca se , for p = 1, the coupling term vanishes , and In fact , the
governing partial differential equations all become the same ordinary
dif ferent ia l  equation along a ray because the curvature terms drop out as
well. As the shock strength increases p decreases from 1 in the range
1 2 p 2 1’min 

> o, a increases from o in the range o ~ a ~~ amax 
< 1, and U

increases from c~ in the range c~ � Ii < ~~, as may be seen in Figure 1 for
the special case of a polytropic gas with y = 1.4. It seems clear that of
the three coupling terms in (4.48) the last is weakest by far. For

example , in the case of a polytrop ic gas the term (l-p 2)/p
2 increases men-

2 2
otonically to (y+l)/( (-I) ( = 6 for y = 1 . 4 ) ;  the term m ( l -a ) ( 1 -p  ) /p ’

~
is ex a c t l y  equal to m 4 -l and so it always increases towards ~ ; bu t the
te rm ( l - a ) ( l - p ) / m  increases_ to a weak maximum (about 0.11 at m = 1.4 for
-
~ 

= 1.4), then decreases to zero . A few trial calculations indicate that
the maximum is not p a r t i c u l a r l y  sensit ive to and never exceeds 0.13 or
so . The b racketed terms in (4.48) are shown in Figure 4 .  The three solid
curves correspond to the case y = 1 .4 .  Note that the scale for C.~ is
expanded to fo r ty  t imes that  for and C , .  For comparison the p~a k v a l u e

of C3 
is showa on the  same scale as the other two , and a ppear s as the

sma l l  t i c k  ma rk j u s t  abov e p
~ 

= 0.6 .  ‘[‘he two curves w i t h  dashed segments
r c l lr c sen t  C~ for the extreme cases ‘y = 1 ( lower  curve) and y = =‘ (upper
curve) . 0n~ y the end points  and the maxima were a c t u a l l y  calculated for
the lat te r cases.

- - ---- ----- - -  - - -~~~~~~~~~~~~:j ~~~~~~~~~~~~~~~~~~_
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to the main text for full e x L L i i i ~i t  ~w i .

On the other hand , the strength of the coupling term depeods a~ he~ I

on 
~~ 

. Eu 1 , ~‘c~ Lu ~ 
1 , or (pc ) 

- 

~~~ 
+ 

~~~~~ - , ) 
- 

, and in  e - t  m t C ot

these terms should be made in any application , if ~oss ihle . t - ’r e-~:&~~ k ,
in the case of small perturbation of a nearly plane shock , t h -  t h ird ~om-
hinat ion of terms depends onl y on overtaking disturbances ~~~Ct

p. 268 and 273). Therefore , a good approximation should result by negi ..
ing these terms in cases where the effects of inhomog eneities , c , i n s t l c c ,

or focusing are to he st udied ; t ha t is , in cases where the overt i~ uu.
disturbance is absent or weak compared to other  e f f e c t s .  T h i s  is the
a ppro ach adopted by Whitham. A good approx imat ion  should  al’-o ri’si jl~ ~~

eases where the overt aking disturbance can he estimated by [ m c i i  ‘
~~~

- -

as i n the  case of weak shocks.

~
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Comparison With Whithain’s Shock Dynamics

In a series of three papers (see References 5, 6, 7, and 8) G. B.
Wh itham developed a theory of shock dynamics that was intended to descr ibe
medium to strong shocks in cases dominated by geometry or short time local
effects. The theory was based on two purely kinematic relations, and an
assumed nonlinear relation between Mach number and the area of a ray tube .
This last relation was derived from a one-dimensional formulation of the
perturbation of a shock that propagates down a channel with slowly varying
cross section. Equation (4.36) with zero right hand side corresponds to
the f irst of Whitham ’s kinematic relations. The second may be found by
apply ing Euler ’s formula for the derivative of a determinant to (2.7).

J = — ~~
-— tdet~-,~~ ( ~~

I r /~~ i\ ‘
~

= 

~~ ~~~ ~ ; r = 1, 2, 3 (4 .4 9)
~x au ,3

I
= J b.a 3i .

~~~ , ,i

Equation (4.49) is equivalent to the formula (b~ /J) 
~ 

= o, which, if
spec iali zed to the case of normal rays, corresponds to the form originally
used by Whitham . In any case , with the aid of ( 2 . 7 ) ,  (3 .4 ) ,  and (4 .14) ,
equation (4.49) may be reduced to

(A 2) 
~ +Un. . - ‘ = - ( 6 . .  - n.n.)(u. .)  (4.50)

1,1 —~ 13 1 3 1,3

where A½ 
= J det A r~ I ~~~. (The square root of the determinant of the surface

metric , wh ich is a measure of surface area , was called the area func tion
by Whitham and denoted A . )  The use of an assumed relation between the
area function and the shoc k speed , K2 = f(U) , in equations (4.36) and
(4.50) , both with zero on the right sides , leads to a system of hyperbolic
equations fi (iri

- ~~~~~ + U n .  . = oU ,3 1,1

(4.51)
n. + A ~~U = 0i ,3 i , r

The charac teristic speed of propagation for these equations is

S 1~~~~ U_f(U)~~~~
2 

~ m
2_i~~~ (4.52)

— 
c~ ~ 

f ’ (U) ~ ~(m) ~

30
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It turns out that A(m) in (4.4 6)3 and in (4.52) , as given in (8) , are

identically equal. Thus, the full equation (4.34) represents a generaliza-
t ion of Whitham ’s shock dynamics to fluids that are nonconductors of heat
and that have generally inhomogeneous conditions ahead of the shock.
Furthermore, by working with exact equations, it has been poss ible to
retain the complete coupling term . This should permit error est imates
and systematic approximations to be made.
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APPENDIX

The inhomogeneous terms in equations (4.20), (4.28), and (4.34) are
l isted here .

(4 .20) :

I = - 

~~~~

—_—

~~

- 

~E~- ~~ 
- 

l+3~
2 

a] 
_ap2_!Bi~ 

[
1_a - .L~~

.1 
uo~~ +

p 1-u m l+u Pe~ m

p 2 p e
+ ~~ ~~~~ 

_
~iL. _IL - 1+a—~--- Un

~~ l-p~ 
Pfl e~ pe~

- ~~~- ~a ~~~ 
+ [1_a - E~

] 
~~~ ~~~

(4.28):

= £.~ - 
1,.3~

2 

~ [1_a - 4 + 

~~~~2] 
-ap

2 !.a_~ E l_ a _!~.] ~ (UU n 
+ uu~~~~

)p l- p m 1-3p pe m

p 2 p e  p
- T] 1-3 p ~~~~~~~ —fl-— - i +a —fl--—— U~pU 2 p - - ,n

1-p ,
~ 

e pe

- !~ ~a ni~j 
+ [1_a - 4] ~~~~ u~~

(4.34):

I = pU ~~~~~~~~~~ 
fta 
!~~~. + i~~~

] 
+ ap!fl___ 

[
i_a _ _

~]~ 
(Uu n 

+ uu
~~1)

+ ~~i l-a(1-p) ){~ _.!L.._.tL -1]+ ap

+ 
l - a ( l - p )  op - ~ - Iapn.n. + (1-a) ~ . .1 ~~. . - ( l - a ) ( 1 - p )

p ~~ ~ L ~ ‘3J  ‘‘~ p

.., _ •,

— __r - — 
--~~~~~~ 
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LIST OF SYMBOLS

Ar Base vectors in the shock surface

Art, ~~~ Surface metric components

A Determinant of surface metr ic det A

A , B, C Coeffic ients in a shock surface wave equation

a Shock ampl itude

B~~ Surface curvature tensor

b Propagation vector

b Measure of entropy jump

c Speed of sound

c , c Specif ic heats
V P
e(u, 

~
) Internal energy

f Body force

1~ ~~ 12 
Inhomogeneous terms

J Jacobian determinant

1 Unit vector in shock surface

m Inc ident Mach number

n Un it normal to shock surface

p Pressure

s Speed of surface disturbance

t Time

U Shock speed relative to fluid

u1, u
2
, u

3 Surface coord inates and time

u Par ticle veloc ity

y Shock speed

35
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Cartesian coord inates

Ratio of spec ific heats

Spec if ic entropy densi ty

e Temperature

A Function of Mach number

Tra iling Mach number

p Mass densi ty

Shock surface

~(x) 
Arrival time of shock

u Specific volume

Character istic function on shock surface

[ •1 Jump of bracketed quantity
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